If it's not what You are looking for type in the equation solver your own equation and let us solve it.
45=-6q^2+51q
We move all terms to the left:
45-(-6q^2+51q)=0
We get rid of parentheses
6q^2-51q+45=0
a = 6; b = -51; c = +45;
Δ = b2-4ac
Δ = -512-4·6·45
Δ = 1521
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1521}=39$$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-51)-39}{2*6}=\frac{12}{12} =1 $$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-51)+39}{2*6}=\frac{90}{12} =7+1/2 $
| 4x+160=4800 | | 7−3b=-2b | | 5w=7+4w | | 9+8g=-g | | 6m=8-5m^2 | | (2i)=(3i) | | 3b=2b+2 | | 7(2h-4)-3h=108 | | 10+2n=8 | | 7x-1=3x2 | | 6f+3f=f | | 2(x-3)/4=x+1/4 | | 77+-1x=169+-10x | | 40x+16=56 | | x+0.5=1.6 | | 4.5n=2737.8 | | -7=-5w+2(w-5) | | 4.5/n=27/37.8 | | 12^x=1020 | | y-4.96=3.5 | | 34=7(u-8)+3u | | 12^4x=1020 | | 70+10x=804 | | 16+9x=25 | | 3(w+3)-5w=-1 | | 7(y-7)-3y=-9 | | -26=-8v+2(v+8) | | X+0.5x-0.5=1 | | 4(w+9)=-7w+14 | | -8y+14=-5(y-1) | | -9(v-7)=8v-39 | | 8b–4=84 |